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Roesler [II and Benbow [21 have observed conic cracks occurring during 

the pressure of an axially symmetric stamp on a brittle body. The formu- 

lation and the solution of the problem of formation and development of 

cracks in an elastic body during the indentation of a rigid stamp is of 

significant interest. 

The problem considered here is the plane problem of the initial de- 

velopment of cracks from the corner points of a semi-infinite rectangu- 

lar cut, at the bottom of which there acts a rigid stamp. When the 

stamp completely fills the rectangular cut, this problem also answers 

the question concerning the experimental conditions of Roesler and 

Benbow. The basic theory of crack equilibrium [31 is employed for the 

solution. 

1. Formulation of the problem and basic relations. 1. We consider an 

infinite elastic body of plane strain, with a cut in it consisting of a 

rectangular semi-strip y > 0, 111 < h (x, y are the Cartesian coordi- 

nates). At the bottom of the cut there is a perfectly rigid stamp. sym- 

metrical about the y-axis, touching the walls x = * h closely every- 

where and sliding along the walls without friction (Fig. la). The force 

P is applied to the stamp and is directed along the y-axis. There is no 

friction at the contact area of the stamp with the body 1x1 ( a (a < h), 

the dimensions of which will, generally speaking, be determined in the 

process of solving the problem. The stress is zero at an infinite dis- 

tance. 

Let the material of the elastic body resist compression and shear 

well, but tension poorly. These properties are exhibited by many real 
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materials. Then it is natural to suppose that the cracks arising in the 
body are cracks of normal rupture [cleavage]. For determination of the 

curvilinear shape of the cracks of normal 

rupture, two additional conditions are 

necessary. 

By analogy with the procedure in IId, 

we assume the following hypothesis: the 

development of curvilinear cracks of 

61-L -1 
t normal rupture proceeds along the direc- 

1 L I tion in which the normal stress 00 is a 

~pymr maximum (r, 8 are the polar coordinates 

Fig. 1. at the tip of the cracks). It follows 

from this hypothesis that the direction 

of natural cracks of normal rupture 

tangent to the surface must be the direction of maximum stress a0 at the 

ends, and that the shear stress -r,.e must be equal to zero. This hypothe- 

sis of “symmetry in the small” gives one of the necessary additional con- 

ditions. For another condition, the Barenblatt theory of crack equi- 

librium is employed [31, according to which the stress a0 along the 

crack, calculated without taking into account the force of cohesion, has 

a singularity K/wJ s where K is the modulus of cohesion, s the distance 

from the end of the crack. We note that for cracks not satisfying the 

condition of symmetry in the small, the Barenblatt condition does not 

hold. * 

2. According to the method of Muskhelishvili 151, the components ax, 

o, 7 Y XY 
of the stress tensor and the displacement component vectors u 

and v in the plane problem of the theory of elasticity are written as 

analytic functions O(Z) and Y(Z) where z = x + iy. The basic relations 

__- -- 
6, + LTrlJ = St> (2) + 0 (z) - 12 (z) - (z -.- z) W(z) 

-- -- 
sy - izxy = 0 (z) + 0 (2) + Q (z) + (z - z) 0’ (z) 

2p ~+i+0(z)-(D)-qY)-(z-z)qz) 
( 

-- 

2p -f& -i $- 
( ) 

-- -- 

= x0(z) - 0 (z) + Q (z) + (Z - Z) 0' (z) 

Q (2) = Z0’ (z) + Y (Z) (x33-4Y) 

(I.11 

l The condition of "symmetry in the small” follows, generally speaking, 

from the hypothesis of autonomy of a finite region of the crack (31. 
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hold, where lo and v are the shear modulus and Poisson’ s ratio, respec- 

t ively. 

2. Initial development of cracks from the corners of a rectangular 

cut. 1. Up until the formation of cracks the boundary conditions 

t .x !, == 
0, J?+o for zc- th, y>O (2.1) 

hold on the side walls of the cut. It is easy to see that up until the 

formation of cracks the shear stress on the real axis of x in an elastic 

body is equal to zero 

t xz 
X!I 

0 for y-0 (2.2) 

and that the normal stress ay is tensile. 

19e suppose that a cleavage crack begins to develop at the corner 

points of the cut. It follows from the first additional condition and 

from relation (2.2), that the contour of the crack will touch the real 

x-axis at the corner points (*h, 0). 

It may be shown that if boundary conditions (2.1) hold after the 

formation of a crack on the side walls of the cut, then the crack con- 

tour will be a piece of the real axis for any value of the force P. 

Generally speaking, the second boundary condition of (2.1) does not 

hold after the formation of a crack; nevertheless for a small length of 

crack which differs only slightly from a piece of the real axis and for 

the side boundary condition differing only slightly from (2.1). one may 

take the condition (2.1) as justified and the boundary conditions to 

follow along with the contour of the crack on the real axis. With this 

approximation we take the crack to develop along the real axis and the 

boundary conditions (2.1) to hold on the side walls (Fig. 1). The abso- 

lute value of the coordinates of the ends of the crack are denoted by 

Z(1 >h). 

2. This problem is related to the class of problems considered in 

[61 . 

The conditions on the boundary of the elastic body are written in 

the form 

z q = 0 for y=O, Iz(<Zandforz=fh, y>G 

a,=0 for y=O, h<lzl<l 

au/ay=o for r=fh, y>O 

av/ax=f’(x) for y=O, Ixl<h 

(2.3) 
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Here f(r) is the equation of the surface of the rigid stamp. 

On the basis of (1.1) and conditions (2.3)‘ we have the following 
edge conditions for the functions Q(Z) and R(Z): 

ImQ=O for y=O, [zj<landfors=&:, y>O 

Ina@= for z=*fL, y>o 

lm~=[2~/(%+~)1~(~) for y=o, /21<n 

Re[2Q5+8]=0 for y=O, Z>lzl>a 

(2.4) 

(2.5) 

For large values of z the analytic functions @(x) and R(Z) take the 
following forms: 

(D (2) = Pi (4%)~*z-’ + 0 (a-*), 

It follows that on the basis of (2.4) 

f-2 (2) = 0 

Q (2) = 0 (2’) 

We pass to the complex plane of the parametric variable < = 5 $ 
with the aid of the transformation z = o({) 

o(C) = - 2h 
n (2 - LB) 1 

-4 i/D--Tp+ (2--J!?) sin-’ $1 ( air’ 0 = 0) 

Here, as 5 -+ m the relations 

VLx - <a = - ic + 0 (C-l), 0 (5) = Zkin-’ (2 - Lx)-’ 5” + 0 (5%) 

hold. 

The function (2.8) conformally transforms the UPPer SemiPlane 

(2.6) 

(2.7) 

i’l 

(2.3) 

(2.9) 

I@ 5 > 0 into the external semistrip Im z > 0, \Re z/ < h with two cuts 
(th, iZ) fn the z-plane, for which the relations 

0 (0) = 0, a(-i)=I, o(oo)=Q) 

hold at corresponding points (Fig. 1). 

The magnitude of L(L > 1) is determined by the equation 

$(2-D)= v--t. (2-D) ain-’ + (2.10) 

We denote 

a b (C)l = 9 0 l? (8 = -2P (% + I)-lP b (El1 (2.21) 

The edge problem (2.5) with the aid of formulas (2.7) and (2.11) is 
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written in the following form 

Im0i=O for ‘1=0, IEI>L 
Re@i=O for n=O, t>lEl>L 

Im %= g(E) for 9=0, h>l51 

Here the value of h~(h ( 1) is found from the equation 

z (2 - L.*) = )c v/L- + (2 - L2) sin-’ 

On the basis of (2.6) and (2.9) we have, as < - 0) 

aii (t;) = P (8h)-1 (2 - P) t-2 + 0 (C-2) 

The function o(i) shows the following properties: 

-- 
0 (f) = - h + i v/t; - Lh(2L)%-‘(2 - .P)-’ + 0 (I/r; - L) 

o(~)=-l+(f;-i)24h~-i(2-L2)-1(L2-l)-”~$~~(~-l)*J 

(2.12) 

(2.13) 

(2.i4) 

as 5 --t L (2.1j) 

as <- 1 (2.16j 

The function O(L) at the ends of the crack has the singularity 
-l/2. . (Lf1) , it follows from this that the function @l(c) has two poles 

of the first order on the basis of formula (2.16). 

The solution of the edge problem (2.3). (2.6) in the class of func- 

tions having first order poles at 5 = * 1, bounded at the points ; = f I, 

and unbounded (but integrable) at the points 5 = f A, is found by the 

Keldysh-Sedov formula [71 

df + x& (2 AZ)] (2.17) 

Here 

(2.18) 

If the stamp is smooth, the dimensions of the contact area (1 are found 

from the Liuskhelishvili condition of the finiteness of stress at the end 

of the area !5], or what is the same thing, from the condition that 

bounds the function @I(j) at the points l = f h 

A 

c t (12 - 1) g (t) dl 

t’ 1/(L* - ts) (La - Pj 
-/- lg (2 - q :-- 0 (2.i9) 

The length 1 of the crack is determined from the Rarenblatt condition 

[31 at the tip of a crack of normal rupture. Ke have 
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3. We consider a simplified special case of the general solution. Let 
the base of the stamp be rectangular g(t) = 0 and the dimension a of the 

contact area be given. Then according to (2.17) 

the function @I(<) is written in the form 

P(2 -q 

I/ 

a 
@l(f) = &(<a_ 1) ;*:;a - 

Condition (2.19) for the crack length I 
takes the form 

The curves of Fig. 2 show the relation be- 

tween the nondimensional force P/K4 h and the 
0 B 
I.0 1.4 I.8 

nondimensional crack length l/h for certain 

values of the parameter a/h. The curves were Fig. 2. 

computed from formulas (2.22), (2.10) and 

(2.13). The solid lines show the stable parts of the curves and the 

dashed lines the unstable parts. It is seen that for a/h equal to 1, the 

development of a crack proceeds in a stable fashion. For values of a/h 

different from 1. the curve always has an initial unstable part, so that 

the crack grows only with sufficient force P of a certain critical value 

corresponding to the minimum points on the curves. For increasing values 

of PJKJh, all curves approach one asymptote 

(2.23) 

The author thanks G.I. Barenblatt for valuable discussions. 
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